Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.02.13.23285853

ABSTRACT

Background: To cope with the persistence of the Covid-19 epidemic and the decrease in antibody levels following vaccination, a third dose of vaccine has been recommended in the general population. However, several vaccine regimens had been used initially, and the heterologous ChadOx1-S/BNT162b2 regimen had shown better efficacy and immunogenicity than the homologous BNT162b2/BNT162b2 regimen. Aim : We wanted to determine if this benefit was retained after the third dose. Methods: We combined an observational study of SARS-COV-2 infections among vaccinated healthcare workers at the University-Hospital of Lyon, France, with an analysis of immunological parameters before and after the third mRNA vaccine dose. Results: Following the second vaccine dose, heterologous vaccination regimens were more protective against infection than homologous regimens, but this was no longer the case after the third dose. RBD-specific IgG levels and serum neutralization capacity against different SARS-CoV-2 variants were higher after the third dose than after the second dose in the homologous regimen group, but not in the heterologous group. Conclusion: The advantage conferred by heterologous vaccination is lost after the third dose in terms of both protection and immunogenicity. Immunological measurements one month after vaccination suggest that heterologous vaccination induces maximal immunity after the second dose, whereas the third dose is required to reach the same level in individuals with a homologous regimen.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.01.21262969

ABSTRACT

Type I and III interferons (IFN-I/{lambda}) are key antiviral mediators against SARS-CoV-2 infection. Here, we demonstrate that the plasmacytoid dendritic cells (pDCs) are predominant IFN-I/{lambda} source by sensing SARS-CoV-2-infected cells. We show that sensing of viral RNA by pDCs requires sustained cell adhesion with infected cells. In turn, the pDCs restrict viral spread by a local IFN-I/{lambda} response directed toward SARS-CoV-2-infected cells. This specialized function enables pDCs to efficiently turn-off viral replication, likely by a concentrated flux of antiviral effectors at the contact site with infected cells. Therefore, we propose that pDC activation is essential to locally control SARS-CoV-2-infection. By exploring the pDC response in patients, we further demonstrate that pDC responsiveness correlates with the severity of the disease and in particular that it is impaired in severe COVID-19 patients. Thus, the ability of pDCs to respond to SARS-CoV-2-infected cells could be a key to understand severe cases of COVID-19. HighlightsO_LIpDCs are immune cells against SARS-CoV-2-infected cells C_LIO_LIpDC-mediated IFN-I/{lambda} response against SARS-CoV-2 infected cells control COVID- 19 progression C_LIO_LIpDC response by SARS-CoV-2 is restricted to IRF7-prioritized signaling leading to antiviral control C_LIO_LIpDC antiviral response directed toward contacting SARS-CoV-2-infected cells C_LI


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-757455.v1

ABSTRACT

Following severe adverse reactions in patients vaccinated with the AstraZeneca ChadOx1 (Chad) vaccine, European health authorities have recommended that patients under the age of 55 who received one dose of Chad vaccine receive a second dose of Pfizer BNT162b2 (BNT) vaccine as a booster. However, the effectiveness and the immunogenicity of this vaccination regimen have not been formally tested. Here, we show that the heterologous Chad/BNT combination confers better protection against SARS-CoV-2 infection than the homologous BNT/BNT combination in a population of health care workers. To understand the underlying mechanism, we monitored in a longitudinal way the anti-spike immunity conferred by each vaccinal combination. Both combinations induced strong anti-spike antibody responses after boost in all vaccinated individuals. However, sera from heterologous vaccinated individuals displayed a stronger neutralizing activity, regardless of the SARS-CoV-2 variant analyzed, and this was associated with more switched memory RBD-specific B cells with an activated phenotype and less IgA. The Chad vaccine induced a stronger T cell response than the BNT vaccine after the priming dose, and the reciprocal was true for the IgG response, which could explain the complementarity of both vaccines when used in an heterologous setting. This strongly protective vaccination regimen could be therefore particularly suitable for immunocompromised individuals.


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.27.20182493

ABSTRACT

Understanding the immune responses elicited by SARS-CoV-2 infection is critical in terms of protection from re-infection and, thus, for public health policy and for vaccine development against the COVID-19. Here, using either live SARS-CoV-2 particles or retroviruses pseudotyped with the SARS-CoV-2 S viral surface protein (Spike), we studied the neutralizing antibody (nAb) response in serum specimens from a cohort of 140 SARS-CoV-2 qPCR-confirmed patients, including patient with mild symptoms but also more severe form including those that require intensive care. We show that nAb titers were strongly correlated with disease severity and with anti-Spike IgG levels. Indeed, patients from intensive care units exhibited high nAb titers, whereas patients with milder disease symptoms displayed heterogenous nAb titers and asymptomatic or exclusive outpatient care patients had no or poor nAb levels. We found that the nAb activity in SARS-CoV-2-infected patients displayed a relatively rapid decline after recovery, as compared to individuals infected with alternative coronaviruses. We show the absence of cross-neutralization between endemic coronaviruses and SARS-CoV-2, indicating that previous infection by human coronaviruses may not generate protective nAb against SARS-CoV-2 infection. Finally, we found that the D614G mutation in the Spike protein, which has recently been identified as the major variant now found in Europe, does not allow neutralization escape. Altogether, our results contribute to the understanding of the immune correlate of SARS-CoV-2 induced disease and claim for a rapid evaluation of the role of the humoral response in the pathogenesis of SARS-CoV-2.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL